An order parameter equation for the dynamic yield stress in dense colloidal suspensions
نویسندگان
چکیده
We study the dynamic yield stress in dense colloidal suspensions by analyzing the time evolution of the pair distribution function for colloidal particles interacting through a Lennard-Jones potential. We find that the equilibrium pair distribution function is unstable with respect to a certain anisotropic perturbation in the regime of low temperature and high density. By applying a bifurcation analysis to a system near the critical state at which the stability changes, we derive an amplitude equation for the critical mode. This equation is analogous to order parameter equations used to describe phase transitions. It is found that this amplitude equation describes the appearance of the dynamic yield stress, and it gives a value of 2/3 for the shear thinning exponent. This value is related to δ in the Ising model. PACS numbers: 82.70.Dd, 05.10.Gg, 64.70.Pf, 83.60.Df An order parameter equation for the dynamic yield stress 2
منابع مشابه
First-principles constitutive equation for suspension rheology.
Using mode-coupling theory, we derive a constitutive equation for the nonlinear rheology of dense colloidal suspensions under arbitrary time-dependent homogeneous flow. Generalizing previous results for simple shear, this allows the full tensorial structure of the theory to be identified. Macroscopic deformation measures, such as the Cauchy-Green tensors, thereby emerge. So does a direct relati...
متن کاملDense colloidal suspensions under time-dependent shear.
We consider the nonlinear rheology of dense colloidal suspensions under a time-dependent simple shear flow. Starting from the Smoluchowski equation for interacting Brownian particles advected by shearing (ignoring fluctuations in fluid velocity), we develop a formalism which enables the calculation of time-dependent, far-from-equilibrium averages. Taking shear stress as an example, we derive ex...
متن کاملNonlinear response of dense colloidal suspensions under oscillatory shear: mode-coupling theory and Fourier transform rheology experiments.
Using a combination of theory, experiment, and simulation we investigate the nonlinear response of dense colloidal suspensions to large amplitude oscillatory shear flow. The time-dependent stress response is calculated using a recently developed schematic mode-coupling-type theory describing colloidal suspensions under externally applied flow. For finite strain amplitudes the theory generates a...
متن کاملNonlinear Rheological Properties of Dense Colloidal Dispersions Close to a Glass Transition under Steady Shear
The nonlinear rheological properties of dense colloidal suspensions under steady shear are discussed within a first principles approach. It starts from the Smoluchowski equation of interacting Brownian particles in a given shear flow, derives generalized Green-Kubo relations, which contain the transients dynamics formally exactly, and closes the equations using mode coupling approximations. She...
متن کاملDiscontinuous shear thickening in Brownian suspensions by dynamic simulation.
Dynamic particle-scale numerical simulations are used to show that the shear thickening observed in dense colloidal, or Brownian, suspensions is of a similar nature to that observed in noncolloidal suspensions, i.e., a stress-induced transition from a flow of lubricated near-contacting particles to a flow of a frictionally contacting network of particles. Abrupt (or discontinuous) shear thicken...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2006